El rombicuboctaedre està format per 18 quadrats i 8 triangles equilàters.
Coordenades dels vèrtexs
Per un rombicuboctaedre d'aresta unitat, les coordenades dels seus vèrtexs són:
- \(V_1=\left(a,a,b\right)\)
- \(V_2=\left(a,a,-b\right)\)
- \(V_3=\left(a,-a,b\right)\)
- \(V_4=\left(a,-a,-b\right)\)
- \(V_5=\left(-a,a,b\right)\)
- \(V_6=\left(-a,a,-b\right)\)
- \(V_7=\left(-a,-a,b\right)\)
- \(V_8=\left(-a,-a,-b\right)\)
- \(V_9=\left(b,a,a\right)\)
- \(V_{10}=\left(b,a,-a\right)\)
- \(V_{11}=\left(b,-a,a\right)\)
- \(V_{12}=\left(b,-a,-a\right)\)
- \(V_{13}=\left(-b,a,a\right)\)
- \(V_{14}=\left(-b,a,-a\right)\)
- \(V_{15}=\left(-b,-a,a\right)\)
- \(V_{16}=\left(-b,-a,-a\right)\)
- \(V_{17}=\left(a,b,a\right)\)
- \(V_{18}=\left(a,b,-a\right)\)
- \(V_{19}=\left(a,-b,a\right)\)
- \(V_{20}=\left(a,-b,-a\right)\)
- \(V_{21}=\left(-a,b,a\right)\)
- \(V_{22}=\left(-a,b,-a\right)\)
- \(V_{23}=\left(-a,-b,a\right)\)
- \(V_{24}=\left(-a,-b,-a\right)\)
on:
- \(a=\frac{1}{2}\)
- \(b=\frac{1+\sqrt{2}}{2}\)